NAME OF TEACHER: DR. M. TARIQ **DEPARTMENT:** DEPARTMENT OF **PHYSICS**

CLASS: BSC (NEP)-I YEAR (I SEMESTER) (APPLICABLE FROM SEPTEMBER 2021)(CREDITS:04)

S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY /	TEACHING	LEARNING	ANY OTHER			
	(YEAR,				WEEKLY	PEDAGOGY	OUTCOMES	DETAIL			
	SEMESTER)				PLAN						
01	02	03	04	05	06	07	08	09			
1											
I	BSC (NEP)	P-1	Course Oi	<u>itcomes</u> : 1. The students would cle	arly understand	the conflict between N	lewtonian mechani	cs and Special			
	-		Relativity a	and thus would know how the progre	tionary scientific ideas i	is made through log	gical evidences				
	I YEAR,	(MAJOR	and observa								
	T	(MAJOK	2. They we	. They would be able to understand the differences between inertial and noninertial frames and see how pseudo-forces							
	SEMESTER		arise in non	-inertial frames.				1			
		MINOR)	3. They wo	uld have a clear understanding of the	dynamics of co	nservative and non-cons	servative forces in r	eal life such as			
	CREDITS-4		in oravitatio	gravitational fields or mechanical systems having friction etc							
		PHY-101-	4 They wo	4. They would feel the thrill to know that the same set of laws that work for planetary and galactic motions also work in							
	T:04	MECHANICS	aur daily lit	for Eurther they would be able to do	methometical as	loulations with applicati	on of these laws to	us also work in			
				our dany me. Further, mey would be able to do mamemanear calculations with application of these laws to various objects							
		AND WAVE	and artificia	and artificial satellites.							
		MOTION	5. They we	5. They would be able to understand and calculate various macroscopic elastic properties as the response of the widely							
			used materi	als through the application of simple	classical laws.						
			6. The stud	lents would be able to understand an	nd apply the pro	operties of oscillations (natural, damped ar	nd forced), and			
			waves and a	appreciate their omnipresence in vari	ous phenomena a	around us.					
				Galilean transformations of space	MDI	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION			
			UNIT-I	and time and their relation to	MIN. 14	TEACHING METHOD	UNDERSTANDING	ASSIGNMENTS			
				Newton's laws of motion. Strong	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	AND			
				and weak form of the Newton's		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS			
				third law of motion. Difference		VIDEO, CLASS ROOM					
				between Inertial and non-inertial		TEACHING WETHOD)					
				frames Action-at-a-distance and							
				Mach's principle Conclusions of							
				Mach's principle. Conclusions of							

	Michelson-Morley experiment. Chief arguments against Galilean relativity. Postulates of Special Relativity. Simple ideas of length contraction and time dilation. Energy and momentum in relativistic mechanics and modification of Newton's laws of motion. Concepts of gradient, divergence and curl of physical quantities. Simple application of Gauss's divergence and Stoke's curl theorems. Conservative and non-conservative forces, Conservation laws for energy and linear momentum and their relation to symmetries. Pseudo- forces in rotating frame. Coriolis				
UNIT-II	Elastic and inelastic collisions and one and two dimensions. Centre of mass frame as the zero- momentum frame. Angular momentum, Torque, Conservation of angular momentum and its relation to isotropy of space. Rotational energy and inertia tensor. Moment of inertia for simple bodies (ring, disk, rod, solid and hollow sphere, solid and hollow cylinder, rectangular lamina). The combined translational and rotational motion of a rigid body on horizontal and inclined planes. 4 Elasticity,	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	Relations between elastic				
	constants. Twisting of hollow and				
	solid cylinders. Torsional rigidity.				
	Bending moment and Flexural				
	rigidity in bending of beam.				
	Geometrical moment of inertia.				
	Depression for cantilever and				
	supported beams.				
	Reduction of a two-body central		ONLINE & OFFLINE	STUDENTS WILL	EVALUATION
UNIT-III	force problem in to one-body	MIN 12	TEACHING METHOD	GET THE	THROUGH
	problem. Reduced mass for a pair	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	AND
	of bodies. Relative and centre of		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
	mass motion with reduced mass.		TEACHING METHOD)		
	Motion of Planets, satellites and		,		
	our solar system. Kepler's laws of				
	planetary motion and their				
	implications. Role of the inverse-				
	square form of Newton's law of				
	gravitation in determination of				
	orbit. Motion of geo-synchronous				
	and geo-stationary satellites.				
	Elementary concepts of Global				
	Positioning System (GPS) based				
	on relativistic mechanics.				
	Structure and motion of our				
	Galaxy due to self gravity.		ONLINE & OFFLINE	CTUDENTS WILL	
UNIT-IV	Differential equation of simple	MIN	TEACHING METHOD	GET THE	THROUGH
	harmonic motion and its solution.	12	ALOTES BI FORM OF	UNDERSTANDING	ASSIGNMENTS
	oscillations Sharphass of	LECTURES	PDF,AUDIO/	DISCUSSED.	AND DISCUSSIONS
	Resonance Quality factor Plane		VIDEO, CLASS ROOM		
	progressive wayes in fluid media		TEACHING METHOD)		
	and pressure and energy				
	distribution along the waves				
	Transport of energy along strings.				

			waves. Standingwaves and groupvelocity.References: Text Books:1. Daniel Kleppner and Robert Kolenkow, "An Introduction to Mechanics", (Mc Graw Hill), 2017. 2e.2. Charles Kittel, Walter D. Knight, Malvin A. Ruderman, Carl A. Helmholz, Burton J. Moyer, "Mechanics (In SI Units): Berkeley Physics Course Vol 1", McGraw Hill, 2017, 2e.3. Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Vol. 1", Pearson Education Limited, 2012.4. Halliday, Resnick and Walker, "Principles of Physics", (Wiley) 2018, 10e.5. Frank S. Crawford, Jr, "Waves": Berkeley Physics Course Vol 3", McGraw Hill, 2017.6. D.S. Mathur, "Mechanics", S. Chand Publishing, 1981, 3e.7. R.K. Shukla and Anchal Srivastava, "Mechanics" Published by: New Age International (P) Limited Publishers.Web References:1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
2	BSC (NEP) I YEAR, I SEMESTER	P-2 (MAJOR)	 <u>Course Outcomes</u>: 1. The student will get an introduction to the discipline of optics and its role in daily life. 2. The optics course will give the student a basic knowledge of interference, diffraction and polarization. 3. The student will be able to analyze and calculate interference between light waves and application of various interferometers along with their practical applications. 4. The student would know the conditions for near and far-field diffraction and be able to calculate the far-field from gratings and simple aperture functions. 	the theory to eld diffraction

T:04	PHY-102- OPTICS	UNIT-I	Electromagnetic nature of light; Superposition of light waves; Coherence, Spatial and temporal coherence; Interference, Division of Wavefront – Young's double slit experiment, Fresnel's Biprism, Lloyd's Mirror; Division of amplitude – Thin films (parallel and wedge shaped films), Newton's rings. Interferometers: Michelson's Interferometer, (i) Idea about form of fringes, (ii) Determination of wavelength, (iii) wavelength difference, (iv) refractive index and visibility of fringes; Fabry-Perot interferometer; Etalon Diffraction; Fresnel Diffraction - Half period zones, Zone plate, diffraction at a straight edge and narrow wire; Fraunhoffer Diffraction – Diffraction at circular aperture, diffraction at single and double slits with derivation of equation for intensity and visibility; Diffraction grating, principal	MIN 13 LECTURES MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD) ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED. STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			Diffraction grating, principal maxima and missing orders.				
		UNIT-III	Resolving power; Rayleigh's criterion of resolution, Resolving power of grating and telescope. Polarization: polarization by reflection, polarizing angle, Brewster's law, Law of Malus; Polarization by dichroic crystals,	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	UNIT-IV	birefringence, anisotropic crystals; Nicol prism, Retardation plates, Babinet compensator; <u>Analysis of polarized light</u> . Optical activity and Fresnel's explanation; Specific rotation, Half shade and Biquartz polarimeters. Jones matrix, matrix representation of plane polarized waves, matrices for polarizers, retardation plates and rotators.	MIN 13 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	 Text Books: 1. F.A. Jenkins and H.E. White, Fundamentals of Optics, Tata McGraw Hill. 2. Brij Lal and N. Subrahmaniyam, Optics, S. Chand. 3. E.Hecht, Optics, Pearson. 4. A.K.Ghatak, Optics, Tata Mc Graw Hill. Web References: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Ultar Pradech Higher Education Digital Library. 					EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
	http://heeco SwayamPra	ntent.upsdc.gov.in/SearchContent.as bha - DTH Channel, <u>https://www.sw</u>	<u>px</u> yayamprabha.go	v.in/index.php/program/	current_he/8	

NAME OF TEACHER: DR. M. TARIQ **DEPARTMENT:** DEPARTMENT OF **PHYSICS**

CLASS: BSC (NEP)-I YEAR (II SEMESTER) (APPLICABLE FROM JANUARY 2022)

S.NO.	CLASS	PAPER	UNIT	TOPIC NAME	MONTHLY/W	TEACHING	LEARNING	ANY OTHER		
	(YEAR,				EEKLY PLAN	PEDAGOGY	OUTCOMES	DETAIL		
	SEMESTER)									
01	02	03	04	05	06	07	08	09		
			Course O	utcomes:						
1	BSC (NEP)	P-3	After succe	ssful completion of this course, stude	ents will:					
	_		1. Understa	nd the basic mathematical concepts r	elated to Electro	magnetic fields, and use	the understanding	of calculus		
I YEAR, along with basic principles to solve problems encountered in science.						ence.	C			
	П	(MAJOR &	2. Compreh	and apply the understanding of f	undamental laws	s and concepts in electric	city and magnetism	, primarily		
	SEMESTER	MINOR) 2. Comprehend and apply the understanding of fundamental laws and concepts in electricity and magnetism, prime						S.		
		PHV_201_	3. Learn ab	out the origin and basic properties of	static as well as	dynamic Electric and M	agnetic fields, and	the kinds of		
	CREDITS-4	FI FCTDICITV	physical ph	enomena they generate - Electromag	netic waves and	their properties				
			4 Account	for the importance of electricity and	magnetism in so	ciety especially with re-	ward to technologic	al applications		
	T:04	MAGNETISM	5 Visualize	etism and obtain in	formation in					
			order to ext	order to evolore physical principles						
				Electrostatics: Electric charge &	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION		
			0111-1	turnes of electric charge densities	12	TEACHING METHOD	GET THE	THROUGH		
				Coulomb's Low Concrel	LECTURES	AIOTES DI FODM OF	UNDERSTANDING	ASSIGNMENTS		
				Coulomo s Law. General		PDF. AUDIO/	DISCUSSED.	AND		
				Electric floor Converse lore		VIDEO, CLASS ROOM				
				Electric Ilux, Gauss's law		TEACHING METHOD)				
				(applications included).						
				Divergence & Curl of						
				Electrostatic field. Line integral of						
				Electric field, Electric potential						
				(V), Electric field as negative of						
				gradient of electric potential (E =						
				- ∇ V), conservative nature of						
				Electrostatic field. Electric						

		notential and Electric field due to				1
		a Dipole and Quadrupole Force				
		a Dipole, and Quadrupole. Force				
		and torque on a Dipole in uniform				
		as well as non-uniform Electric				
		neid. Electrostatic Energy of a				
		configuration of charges, and				
		uniformly charged sphere.				
		Electric fields in Matter:				
		Polarization, Polarization vector				
		(P), Bound charges, Electric				
		displacement vector (D), Electric				
		Susceptibility and Dielectric				
		constant. Relation between E, P				
		and D. Lorentz local field,				
		Clausius-Mossotti equation,				
		Debye equation.				
	UNIT-II		MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION
		Magnetostatics: Magnetic effect	12 LECTURES	TEACHING METHOD	GET THE	THROUGH
		of currents, Magnetic field (B),	LECTORES	(NOTES IN FORM OF	OF THE TOPIC	AND
		Biot-Savart's Law (applications		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
		included). Ampere's Circuital law		VIDEO,CLASS ROOM TEACHING METHOD)		
		and its applications. Divergence		TERCHING WETHOD)		
		and Curl of magnetic field. Scalar				
		and Vector magnetic potential.				
		Forces on a moving charge.				
		Magnetic Force on a current				
		carrying wire and its loop. Torque				
		on a current loop in a uniform				
		Magnetic Field. Current loop as a				
		magnetic dipole and its dipole				
		moment. Magnetic Properties of				
		Matter: Magnetization vector (M),				
		Magnetic Intensity(H), Magnetic				
		Susceptibility and permeability.				
		Relation between B, M and H.				

		Types of Magnetic materials. B-H				
	UNIT-III	Time Varying Electromagnetic Fields: Faraday's laws of Electromagnetic Induction and Lenz's law. Induced Electric field, non- conservative nature of Induced electric field. Self and Mutual Induction (applications included). Selfinductance of a solenoid and toroid, Mutual inductance of two Coils. Energy stored in Magnetic Field. Skin effect. Motion of Electron in a changing Magnetic field – Betatron equation. Theory and working of the moving coil	MIN 12 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	UNIT-IV	Ballisticgalvanometer(applications included).Electromagnetic Waves: Equationofcontinuityofcurrent,Displacement current,derivationofMaxwell'sequationsandphysical significanceof MaxwellCorrectiontermElectromagnetic	MIN 14 LECTURES	ONLINE &OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	Reference	waves in vacuum and isotropic Dielectric medium, Transverse nature of Electromagnetic waves, Energy density in Electromagnetic wave - Poynting vector.				FINAL EVALUATION

			1. E.M. Hill, 2. Rich Vol. 3. Dav 4. W.K Phys 5. Arth 6. J.H. 7. B B 8. D.C 9. N.V 9788 10. R.K <u>WEB REFE</u> 1. MIT Open 2. National 1 https://www.	Purcell, "Electricity and Magnetism (In SI Units): Berkeley P. (2017), 2e. ard P. Feynman, Robert B. Leighton, Matthew Sands, "The Fe 2", Pearson Education Limited, (2012). id J. Griffiths, "Introduction to Electrodynamics" 4th Edition, G. H Panofsky and M. Philips, "Classical Electricity and Magne ics, 2012) nur F. Kip, "Fundamentals of Electricity and Magnetism", (Mc Fewkes& John Yarwood, "Electricity and Magnetism", Vol. I Laud, "Electromagnetics", New Age International (P) Limited Tayal, "Electricity and Magnetism", Himalaya Publishing Ho Vadhwani, "Electricity and magnetism", PHI Learning, ISBN: 120339651 Shukla, "Introduction to Electricity & Magnetism", HP Hami <u>RENCES:</u> Learning - Massachusetts Institute of Technology, <u>https://op</u> Programme on Technology Enhanced Learning (NPTEL), youtube.com/user/nptelhrd	 Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Vol. 2", Pearson Education Limited, (2012). David J. Griffiths, "Introduction to Electrodynamics" 4th Edition, (Cambridge Univ. Press 2020) W.K.H Panofsky and M. Philips, "Classical Electricity and Magnetism" (Dover Books on Physics, 2012) Arthur F. Kip, "Fundamentals of Electricity and Magnetism", (McGrawHill, 1968) J.H. Fewkes& John Yarwood, "Electricity and Magnetism", Vol. I (Oxford Univ. Press, 1991). B B Laud, "Electromagnetics", New Age International (P) Limited. D.C. Tayal, "Electricity and Magnetism", Himalaya Publishing House Pvt. Ltd., 2019, 4e N. Wadhwani, "Electricity and magnetism", PHI Learning, ISBN: 9788120339651, 9788120339651 R.K. Shukla, "Introduction to Electricity & Magnetism", HP Hamilton Limited. VEB REFERENCES: MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 				
2	BSC (NEP) – I YEAR,	P-4	Course O	Course Outcomes:					
	I I SEMESTED	(MAJOR)	determine th	the thermal and electronic properties. The following outcomes a	are expected by this laboratory				
	CDEDITS 4		1. Students	will achieve measurement precision.					
	CREDI18-4		2. Students	will verify the conceptual learning through experiments in thes	ese areas.				
	T:04	PHY 202-	3. Students	will better appreciate the theoretical concepts in mechanics, ele	lectricity and magnetism, and				
		MECHANICS,	4 Online V	gn experiments.	ulation techniques and provide				
		ELECTRICITY	basis for mo	bdeling.	utation teeninques, and provide				
		& MAGNETISM	Lab Exper	ment List :					
			Students ha	ve to do total of 06 experiments from the following list taking	any two experiments from each				
		AND OPTICS	group. Stud	ents have to do three virtual experiments taking one each from	n the groups.				
		LAD	(A)	1. Determination of Young MIN 12 ONLINE D	DISCUSSIONS STUDENTS NE TEACHING WILLGET THE	EVALUATION THROUGH			
			Mechanics:	Modulus of the material of a METHOD	UNDERSTANDING	PRACTICALS			
				2 Determination of modulus of	OF THE TOPIC DISCUSSED.	AND DISCUSSIONS			

	 rigidity of a wire by statical method 3. Determination of 'g' by compound pendulum. 4. Determination of Surface Tension of water by capillary rise method. 5. Determination Coefficient of 				
	Viscosity of water. 6. Determination of the				
	frequency of A.C. Mains				
(B)	1. Measurement of Dispersive power of a given prism	MIN 12 LECTURES	& OFFLINE TEACHING	STUDENTS WILL GET THE UNDERSTANDING	EVALUATION THROUGH PRACTICALS
Optics	2. Determination of the wavelength of light by Newton's			OF THE TOPIC DISCUSSED.	AND DISCUSSIONS
	ring.3. Measurement of height of tower by a Sextant				
	4. Verification of Brewster's Law5. Determination of specific				
	rotation of an optically active substance by polarimeter 6. Diffraction at a wire				
(C)	1. Determination of High	MIN 12	ONLINE DISCUSSIONS	STUDENTS WILL	EVALUATION
Electricity and Magnetism	 resistance by leakage method. 2. Determination of Mutual Induction by Ballistic galvanometer. 3. Determination of Horizontal component of earth's magnetic field by earth inductor. 4. Determination of Magnetic field of a electro magnet by 	LECTURES	& OFFLINE TEACHING METHOD	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH PRACTICALS AND DISCUSSIONS
	5. Determination of Time				

constant striking & extension
Potential of neon bulb in CR
circuit.
6. Magnetic field by Helmholtz
coil.
Online Virtual Lab Experiment List/Link MECHANICS
MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu
/ Virtual Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=74
1. Torque and angular acceleration of a fly wheel
2. Torsional oscillations in different liquids
3. Moment of inertia of flywheel
4. Newton's second law of motion
5. Ballistic pendulum
6. Collision balls
7. Projectile motion
8. Elastic and inelastic collision
Online Virtual Lab Experiment List / Link OPTICS
Virtual Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=189
1. Newton's Rings: Wavelength of light
2. Newton's Rings: Refractive index of liquid
3. Brewster's angle determination
4. Laser beam divergence and spot size Virtual Labs at Amrita Vishwa Vidyapeetham
https://vlab.amrita.edu/index.php?sub=1&brch=281
5. Spectrometer: Refractive index of the material of a prism
6. Spectrometer: Dispersive power of a prism
Online Virtual Lab Experiment List / Link
ELECTRICITY AND MAGNETISM Virtual Labs at Amrita Vishwa Vidyapeetham
https://vlab.amrita.edu/?sub=1&brch=192
1. Tangent galvanometer
2. Magnetic field along the axis of a circular coil carrying current
3. Deflection magnetometer
4. Van de Graaff generator
5. Barkhausen effect
6. Temperature coefficient of resistance
7. Anderson's bridge 8. Quincke's method

REFERENCES: 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e 3. Anchal Srivastava and R.K. Shukla, "Practical Physics (Electricity, Magnetism and Electronics)", Published by: New Age International (P) Limited Publishers 4. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e 5. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e WEB REFERENCES: Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=194 Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/# Digital Platforms/Web Links of other virtual labs may be suggested /added to this lists by individual Liniversities	FINAL EVALUATION THROUGH INTERNAL PRACTICAL EXAMS UPLODED ON LU EXAM PORTAL
---	---

NAME OF TEACHER: DR. M. TARIQ DEPARTMENT: DEPARTMENT OF PHYSICS CLASS: BSC-II YEAR (III SEMESTER)

S.NO.	CLASS (YEAR, SEMESTE R)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I BS YI II	BSC-II YEAR, III SEM	PAPER –I ELECTRICITY AND MAGNETISM	UNIT-I	ELECTROSTATICS	MIN. 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	MAGNETISM	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	ELECTROMAGNETIC INDUCTION	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	DIELECTRICS	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			REFERE 1. 2.	NCE BOOK: . ELECTRICITY AND MAGNETISM BY 1 . FUNDAMENTALS OF ELECTRICITY A	EDWARD M. PURC ND MAGNETISM I	ELL (MCGRAW-HILL ED BY ARTHUR F. KIP (MCGI	UCATION, 1986) RAW-HILL, 1968)	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

П	BSC-II YEAR, III SEM	PAPER-II PRACTICALS	 TO STUDY THE TIME CONSTANT IN A C.R. CIRCUIT. TO STUDY THE SOLID STATE COMMON POWER SUPPLY. TO DETERMINE THE FIELD ALONG THE AXIS OF HELMHOLTZ COIL. TO MEASURE MAGNETIC FIELD USING A BALLISTIC GALVANOMETER. TO DETERMINE THE CAPACITY OF CONDENSOR BY ABSOLUTE METHOD. TO DETERMINE THE COEFFICIENT OF MUTUAL INDUCTION BETWEEN TWO COILS. TO DETERMINE HIGH RESISTANCE BY LEAKAGE METHOD. STO STUDY THE CHARACTERISTICS OF JUNCTION AND ZENER DIODES. TO STUDY THE CHARACTERISTICS OF P-N-P TRANSISTOR. 10.TO MEASURE 'L' & 'C' BY A.C. BRIDGE 	MIN 40 LECTURES	ONLINE DISCUSSIONS & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH PRACTICALS AND DISCUSSIONS
			<u> </u>		<u> </u>	<u> </u>	FINAL EVALUATION THROUGH PRACTICALS UPLODED ON LU EXAM PORTAL

NAME OF TEACHER: DR. M. TARIQ DEPARTMENT: DEPARTMENT OF PHYSICS CLASS: BSC-II YEAR (IV SEMESTER)

XS.N	CLASS	PAPER	UNIT	TOPIC NAME	MONTHL	TEACHING	LEARNING	ANY OTHER
0.	(YEAR,				Y/WEEKL	PEDAGOGY	OUTCOMES	DETAIL
	SEMESTE				Y PLAN			
	R)							
01	02	03	04	05	06	07	08	09
I	BSC-II, YEAR, IV SEM	THERMAL PHYSICS AND	UNIT-I	THERMODYNAMICS	MIN. 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		ELEMENTARY STATISTICAL MECHANICS	UNIT-II	KINETIC THEORY OF GASES	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	THEORY OF RADIATION	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	STATISTICAL MECHANICS	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			REFERE 1.THERMAL	3)	FINAL EVALUATION THROUGH			

			2.A TREAT	2.A TREATISE ON HEAT - MEGHNAD SAHA, AND B.N. SRIVASTAVA (INDIAN PRESS 1969)					
П	BSC-II, YEAR, IV SEM	PAPER-II ELEMENTS OF MODERN PHYSICS	UNIT-1	INADEQUACIES OF CLASSICAL MECHANICS	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			UNIT-II	HEISENBERG'S UNCERTAINTY PRINCIPLE AND ITS APPLICATIONS	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			UNIT-III	CONTINUITY OF WAVE FUNCTION	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			UNIT-IV	BOHR ATOMIC MODEL	MIN 10 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			REFERE 1. co 2. M LE	ENCE BOOK: ONCEPTS OF MODERN PHYSICS- ARTH ODERN PHYSICS- JOHN R. TAYL EARNING2009).	HUR BEISER (MC OR, CHRIS D.	GRAW-HILL, 2009). ZAFIRATOS, MICHAEL	A.DUBSON (PHI	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL	

NAME OF TEACHER: DR. M. TARIQ DEPARTMENT: DEPARTMENT OF PHYSICS CLASS: BSC-III YEAR (VSEMESTER)

XS.N	CLASS	PAPER	UNIT	TOPIC NAME	MONTHL	TEACHING	LEARNING	ANY OTHER
0.	(YEAR,				Y/WEEKL	PEDAGOGY	OUTCOMES	DETAIL
	SEMESTE				Y PLAN			
	R)							
01	02	03	04	05	06	07	08	09
T	BSC-III YEAR.	PAPER –I	UNIT-I	DIODES	MIN.	ONLINE & OFFLINE TEACHING METHOD	GET THE	EVALUATION THROUGH
-	V SEM				LECTURES		UNDERSTANDIN	ASSIGNMENTS
		ELECTRONICS					G OF THE TOPIC	AND
							DISCUSSED.	DISCUSSIONS
			UNIT-II	TRANSISTORS	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION
					LECTURES	TEACHING METHOD	UNDERSTANDIN	ASSIGNMENTS
							G OF THE TOPIC	AND
							DISCUSSED.	DISCUSSIONS
			UNIT-III	FIELD EFFECT TRANSISTORS	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION
					12 LECTURES	TEACHING METHOD	GET THE UNDERSTANDIN	ASSIGNMENTS
					LECTORES		G OF THE TOPIC	AND
							DISCUSSED.	DISCUSSIONS
			UNIT-IV	NUMBER SYSTEM AND	MIN	ONLINE & OFFLINE	STUDENTS WILL	EVALUATION
				CODES	12	TEACHING METHOD	GET THE	THROUGH
					LECTURES		UNDERSTANDIN	ASSIGNMENTS
							G OF THE TOPIC	AND
							DISCUSSED.	DISCUSSIONS
			REFERE	NCE BOOK:				FINAL
			1.SEMICONI	DUCTOR DEVICES : KANAAN KANO				EVALUATION
			2.ELECTRON	NIC PRINCIPLES : A P MALVINO				INTERNAL
								ASSESMENT

								UPLODED ON LU
п	BSC-III YEAR, V SEM	PAPER-II NUCLEAR PHYSICS	UNIT-1	GENERAL PROPERTIES OF NUCLEUS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EXAM FORTAL EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	NUCLEAR MODELS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
				UNIT-III	NUCLEAR REACTIONS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.
			UNIT-IV	ELEMENTARY PARTICLES	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			REFERI 1.INTRODU 2.RADIATIO	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL				
m	BSC-III YEAR, V SEM	PAPER-III PHYSICS PRACTICALS		 TO STUDY THE CHARACTERISTICS OF FIELD EFFECT TRANSISTOR STUDY OF FET AS A VOLTAGE VARIABLE RESISTOR (VVR) AND APPLICATION OF FET AS A VVR IN VOLTAGE CONTROLLED ATTENUATOR (VCA) TO STUDY THE FREQUENCY RESPONSE OF RC COUPLED TRANSISTOR AMPLIFIER STUDY OF IC AMPLIFIER STUDY OF LOGIC GATES TO DETERMINE THE VELOCITY 	MIN 48 LECTURES	ONLINE DISCUSSIONS & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH PRACTICALS AND DISCUSSIONS

OF SOUND BY CRO 7.TO DETERMINE STEFAN'S CONSTANT 8.TO STUDY SERIES AND PARALLEL LCR CIRCUIT 9.TO STUDY CLIPPER AND CLAMPER CIRCUITS.	
 REFERENCE BOOK: 1. ADVANCED PRACTICAL PHYSICS FOR STUDENTS: B.L. WORSNOP AND H.T. FLINT, 1971, ASIA PUBLISHING HOUSE. 2. A TEXT BOOK OF PRACTICAL PHYSICS: I. PRAKASH AND RAMAKRISHNA 11TH EDITION, KITAB MAHAL. 3.A LABORATORY MANUAL OF PHYSICS FOR UG CLASSES: D.P. KHANDELWAL, 1985, VIKAS PUBLICATIONS. 	FINAL EVALUATION THROUGH PRACTICALS UPLODED ON LU EXAM PORTAL

NAME OF TEACHER: DR. M. TARIQ DEPARTMENT: DEPARTMENT OF PHYSICS CLASS: BSC-III YEAR (VI SEMESTER)

XS.N	CLASS	PAPER	UNIT	TOPIC NAME	MONTHL	TEACHING	LEARNING	ANY OTHER
0.	(YEAR,				Y/WEEKL	PEDAGOGY	OUTCOMES	DETAIL
	SEMESTE				Y PLAN			
0.1	<u>R)</u>	0.2	0.4	0.5	0.6	07	0.0	00
01	02	03	<u>04</u>					
I	BSC-III YEAR, VI SEM	MATHEMATICAL METHODS AND NUMERICAL	UNII-I	COMPLEX NUMBERS	MIN. 12 LECTURES	TEACHING METHOD	GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		NUMERICAL TECHNIQUES	UNIT-II	INITIAL AND BOUNDARY VALUE PROBLEMS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	MEAN VALUE THEOREM	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	NUMERICAL METHODS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			REFERENCE BOOK: MATHEMATICAL METHODS FOR PHYSICISTS;WEBER,2005,HARRIS,ELSEVIER					

								UPLODED ON LU EXAM PORTAL
п	BSC-III YEAR, VI SEM	PAPER-II ELEMENTS OF RELATIVISTI C AND CLASSICAL	UNIT-1	MICHELSON-MORRELY	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		MECHANICS	UNIT-II	SPACETIME DIAGRAMS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	HOLONOMIC AND NON- HOLONOMIC CONSTRAINTS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	TWO BODY CENTRAL FORCE PROBLEM	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			REFERE INTRODUC	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL				
III	BSC-III YEAR, VI SEM	PAPER-III SOLID STATE PHYSICS	UNIT-1	CRYSTAL STRUCTURE	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	CRYSTAL BINDINGS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	UNIT-III	ELECTRICAL PROPERTIES OF MATERIALS	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	UNIT-IV	MAGNETIC PROPERTIES OF MATTER	MIN 12 LECTURES	ONLINE & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	REFERE 1. INTRC 2. SOLID	NCE BOOK: DUCTION TO SOLID STATE PHYS STATE PHYSICS: ADRIANUS J. DE	ICS: CHARLES KKER	5 KITTEL		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL